
Design and Implementation of Security
Mechanisms for a Hierarchical

Community-Based Multi-Agent System

Kenichi Takahashi1, Yoshiki Mitsuyuki2, Tsunenori Mine2, Kouichi Sakurai1,2,
and Makoto Amamiya2

1 Institute of Systems & Information Technologies/KYUSHU,
2-1-22 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan.

{takahashi, sakurai}@isit.or.jp
2 Faculty of Information Science and Electrical Engineering, Kyushu University,

744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
{mitsu, mine, amamiya}@al.is.kyushu-u.ac.jp

Abstract. Recently, several community-based systems have been de-
veloped; however, almost all such systems have been developed as Web-
server-based systems. Thus, server administrator can easily eavesdrop
on user communications, since they have to send/receive information
through the server. Therefore, we propose multi-agent-based peer-to-
peer (P2P) system wherein each peer manages his/her information and
exchanges it with other peers directly. This, thus, resolves the problems
posed by Web-server-based systems; however, we have to consider attacks
from malicious third parties. This study designs and implements security
protocols/mechanisms for a hierarchical community-based multi-agent
system. Furthermore, if we consider a practical use case, we should be
able to demonstrate that the proposed system can be implemented by
combining it with existing security techniques for more reliable and rapid
deployment.

1 Introduction

The evolution of the Internet has made it difficult to discover target information,
further, the nature of the Internet, which allows everyone to easily contribute,
has made it difficult to ensure the reliability of information. This imposes the
inference of reliability of information on users. Therefore, community-based sys-
tems have been developed. In a community-based system, users with common
interests and/or objectives organize a community. They can communicate effi-
ciently on the topics within a community. Furthermore, these communities also
facilitate the secure exchange of privacy-related information by restricting com-
munications to within a community.

Almost community-based systems are developed as Web-server-based sys-
tems. These systems enforce security by employing public key infrastructure
(PKI), https, access controls mechanisms, etc. However, since users have to
send/receive information through a server, server administrator can eavesdrop



on their communications. Moreover, a vulnerability in the server may threaten
the privacy of all users.

Therefore, we propose a multi-agentbbased peer-to-peer (P2P) system wherein
each peer manages his/her information and exchanges it with other peers di-
rectly. P2P systems can be divided into pure P2P systems such as Gnutella and
hybrid P2P systems such as Napster. Hybrid P2P systems employ one or more
special peers who provide a special service such as resource discovery and/or
indexing of peers, while pure P2P systems do not employ special peers. With
regard to a community-based system, a hybrid P2P system is more suitable since
special peers organize communities.

In the proposed system, the formation of a community depends on a spe-
cial peer, but each peer in the community can exchange their information di-
rectly. This, thus, remedies the problems posed by Web-server-based systems;
however, we have to consider attacks from malicious third parties, such as eaves-
dropping, message alteration, spoofing. In this study, we design and implement
security protocols/mechanisms for a hierarchical community-based multi-agent
system. Furthermore, if we consider a practical use case, we should be able to
demonstrate that the proposed system can be implemented by combining it with
existing security techniques for more reliable and rapid deployment.

The remainder of this paper is organized as follows; Section 2 presents re-
lated works. Section 3 highlights the security requirements of a hierarchical
community-based multi-agent system. Section 4 describes designs of the secu-
rity mechanisms satisfying these requirements. In section 5, we demonstrate an
example application.

2 Related Work

In [11], an agent-community-based P2P information retrieval system is proposed;
in this system, agent communities manage and look up information efficiently.
In [15], a group-based reputation system is proposed, wherein peers evaluate the
credibility of a given peer based on his/her local trust information or references
from within the group. However, these do not consider security.

In [4, 13], the security functions for a few multi-agent-based applications have
been discussed. In [7], SAgent is proposed for protecting the computations of
mobile agent applications in a potentially hostile environment. Also, several re-
searches [10, 16] have discussed mobile agent security. These, however, do not
take a community structure into consideration.

Most security researches in P2P systems have focused on anonymity or
trust relationships; however, very few have focused on security countermeasures
against attackes such as eavesdropping message alteration, and spoofing [17].
In [1, 3] , these security concerns with regard to community-based system have
been focused on. [3] allows a peer to change the security policy flexibly based
on applications; however, it does not indicate what type of security techniques
are required in particular application. [1] focuses on the security on information



sharing; however, in this system, a peer has to create a digital signature for each
message.

JXTA [14] provides certain functions for the development of secure P2P
systems; it requires developers to determine and combine security functions for
an application. The Globus Project provides the Globus Security Infrastructure
(GSI) [6], which is a security framework for grid computing applications. Groove
[5] provides spontaneous shared spaces in which a small group of collaborators
can securely exchange information. However, these frameworks do not take a
hierarchical community structure into considerations.

3 A Hierarchical Community-Based Multi-Agent System

We represent a user as an agent managing his/her information and supporting
activities. These agents who have common interests and objectives organize a
community. In the proposed model, a community is also defined as one agent;
thus, communities can also organize a community. Therefore, our model allows a
hierarchical community structure (figure 1) [18]. This nature matches that of real
societies. For example, each company consists of certain departments with each
department comprising certain sections and each section comprises certain staff.
As in real societies, a community has a representative, named portal agent. A
portal agent is responsible for organizing a community and subsequently provid-
ing services for new agent participation, deregistration, and channels to actualize
communication from outside the community to within and vice versa. However,
the portal agent does not restrict the communications of agents within the com-
munity. Thus, agents can communicate with each other freely and directly. This
nature protects agents within a community from risks of information leakage
caused by a portal agent.

Portal

Portal

Portal

Agent Community

E.g., department

E.g., staff

E.g., company

Fig. 1. Hierarchical community structure



3.1 Levels of Information Security

An agent manages not only non-privacy-related information but also privacy-
related information to support his/her activities. Thus, each agent is responsible
for releasing the appropriate information to only the appropriate partner in
an appropriate manner. This implies that each agent should protect his/her
information by appliying the appropriate cryptographic techniques according
to levels of information security. With regard to a system with a hierarchical
community structure, we can define four levels of information security:

Closed information, which cannot be released to any agent.
Partner-limited information, which can be released to only those agents who

satisfy a specific condition.
Community-limited information, which can be released to only those agents

in the same community.
Open information, which can be released to all agents.

We do not discuss which levels of information security should be applied
to a particular information entity, since this depends on the application being
considered. Information should be protected in an appropriate manner based on
the level of information security.

3.2 Attacks and Corresponding Countermeasures

We have to consider the prevention of attacks from malicious third parties, such
as eavesdropping, message alterations and spoofing (figure 2). Since closed infor-
mation cannot be released to any agent, we do not need to consider preventive
countermeasures for safequarding this type of information against these attacks.
However, in the case of the other levels of information security, we have to con-
sider to prevent these attacks.

Eavesdropping

Message alteration

Spoofing

Fig. 2. Eavesdropping, message alteration, and spoofing attacks

With regard to eavesdropping, no preventive countermeasure are required
for open informatio as it can be released to all agents. However, community-
limited and partner-limited require preventive countermeasures. Community-
limited information can be released to only agents in the same community; thus,



agents in the same community should be able to access the information but
other agents should not. On the other hand, partner-limited information can be
released to only those agents who satisfy a particular condition; thus, only an
agent who satisfies a specific condition should be able to access the information.
Therefore, we introduce the group and P2P keys for encryption/decryption of
community-limited and partner-limited information, respectively.

In order to protect against message alteration and spoofing, all types of in-
formation require preventive countermeasures. We can use a digital signature for
this purpose; however, the creation and verification of a digital signatures require
high computational power. In this case, we beleive that it would suffice to detect
the spoofing when an attack may occur. Therefore, we propose a mechanism
wherein a sender attaches a hash value generated from the content of a message
with secret information (e.g. random number) to the message. When the receiver
wants to verify whether the message was spoofing or not, he/she requests the
secret information (signed by a digital signature) from the sender. On receiving
this secret information, if the hash value of the message matches that generated
from the secret information, the message can be considered non-spoofed.

Digital signatures indicate that a particular information entity has been cre-
ated by someone who possesses a key for its creation; however, it does not indi-
cate who the key belong to. Usually, a certificate authority (CA) keeps a record
of which belongs to who by offline communication, ID/password authentication,
etc. In the proposed system, a portal agent assumes this role. Therefore, a por-
tal agent specifies requirements for new agent participations. When an agent
wishes to join a community, he/she has to provide information that satisfies the
specified requirements. Then, the portal agent issues a digital certificate for the
agent’s key. The agent can thus prove that the key is recognized by the portal
agent by displaying his/her digital certificate.

3.3 Necessary Protocols

We need to design and implement the following protocols for the prevention of
attacks from malicious third parties:

Participation in a community It is necessary to prepare for activities of new
agents wishing to join a community. Each community has specific require-
ments for participation, for example, ID/password, invitation from a friend
(e.g., mixi [12]), etc. Therefore, a portal agent needs to check whether new
agent satisfies the requirements, issue a digital certificate for the new agent’s
public key, and provides the group key. Note that the information for satis-
fying these requirements may also be sensitive.

Group key communication It provides a secure channel for communication
among agents from the same community. The sender embeds secret infor-
mation into a message as the evidence of his/her message. Thus, he/she can
prove that the message belongs to him/her. Further, it is also necessary to
encrypt and decrypt community-limited information using a group key.



Mutual authentication and P2P communication It provides for the mu-
tual authentication and secure communication between two agents. Mutual
authentication is achieved by verifying the digital certificate of each agent.
Further, two agents need to share a common key (P2P key) for the encryption
and decryption of partner-limited information. After sharing a P2P key, they
can exchange partner-limited information securely. Moreover, they can de-
tect whether the group key communication have been spoofed by exchangin
secret information.

Leaving a community When an agent leaves a community, his/her digital
certificate should be invalidated. Then, his/her digital signature should be
recorded in the certificate revocation list (CRL).

Group key updation When community members change, updated group key
is necessary for forward and backward security.

CRL Reference Some digital signature may be come invalid before their ex-
piry period. Therefore, an agent may want to refer to Cthe RL periodically.

Although we have designed all of the above protocols, this paper presents
only participation in a community, group key communication, and mutual au-
thentication and P2P communication.

3.4 Security Techniques

We use the following techniques for the design and implementation of the pro-
posed security.

Public key cryptosystem This algorithm utilizes a public-secret key pair. A
message encrypted using the public key can only be decrypted using the
secret key and vice versa. In this study, the public and secret keys of agent X
are depicted as PKx and SKx, respectively. The encryption and decryption
of a message M using a key K are represented as EK(M) and DK(M),
respectively.

Common key cryptosystem This algorithm utilizes the same key (common
key) for message encryption and decryption. Thus, the sender and receiver of
a message have to share a common key in advance. Moreover, the algorithm
is much faster than the public key cryptosystem. In this study, a common
key between agents X and Y is represented as CKxy.

Digital signature A digital signature is created using a secret key (of public
key cryptosystem). Since only an agent who knows the secret key can cre-
ate the digital signature for a message, other agents can confirm that the
message is created by the agent who has the secret key. This study repre-
sents the digital signature of message M created using a secret key SKx as
SignSKx(M).

Message authentication code (MAC) MAC is used for the detection of mes-
sage alteration by using a hash function. The MAC for message M is repre-
sented as MAC(M).



Digital certificate A digital certificate binds a public key with an identity. It
is issued by the CA (a portal agent in our system). In this study, the digital
certificate created by a portal agent P (who possesses the secret key SKp)
for a public key PKx is represented as CertSKp(PKx).

Group key The group key is shared among the agents belonging to the same
community and enables them to encrypt and decrypt a message. In this
study, the group key of community C is represented as GKc.

Hash chain A hash chain is a sequence of hash values computed by adapting
the hash function n times. In this study, the hash chain with seed S is rep-
resented as H1(S),H2(S), ..., Hn(S). Even if Hi(S), wherei ≤ n, is known
to other agents, they cannot compute any Hj(S), wherej < i.

4 Design of Security Protocols

We designed the protocols for participation in a community, group key commu-
nication, and mutual authentication and P2P communication.

4.1 Participation in a Community

With regard to participation in a community, it is necessary to check whether
new agent satisfies the requirements for community participation or not, issue
a digital certificate for the new agent’s public key, and provides the group key.
Therefore, we designed the protocol showin in figure 3.

Agent X Portal agent P

PKx

Create CKxpEPKx(CKxp), R, SignSKp(R, CKxp)

Verify SignSKp(R, CKxp)

Create Q from R ECKxp(Q)

Check Q

Create CertSKp(PKx)
CertSKp(PKx), ECKxp(GKc), 

MAC(GKc, CertSKp(PKx))
Verify

MAC(GKc, CertSKp(PKx))

Fig. 3. Protocol for participation in a community

1. When an agent X wishes to participate in a community C, X sends PKx to
the portal agent P of C.

2. P creates a common key CKxp and responds by sending EPKx(CKxp), re-
quirements for participation R, and SignSKp(R, CKxp).

3. X decrypts EPKx(CKxp) using SKx and verifies the integrity of CKxp and
R using SignSKp(R,CKxp). Next, X creates a qualification Q for R and
sends ECKxp(Q) to P.



4. P decrypts ECKxp
(Q) and checks whether Q satisfies R. If it is satisfied, P

creates CertSKp(PKx) and responds by sending CertSKp(PKx), ECKxp(GKc),
and MAC(GKc, CertSKp

(PKx)).
5. X decrypts ECKxp

(GKc) and verifies the possibility of message alteration us-
ing MAC(GKc, CertSKp(PKx)). Also, X creates a hash chain H1(Sx),H2(Sx),
...,Hn(Sx).

Thus, only those agents who satisfy requirements for community participa-
tion can obtain the digital certificate and group key.

4.2 Group Key Communication

With regard to group key communication, message encryption using a group key
and preventive countermeasures against spoofing are necessary. The proposed
system provides two countermeasures against spoofing: One simply involves us-
ing a digital signature; however, it requires much amount of computations in
order to create a digital signature for each message. The second involves the us-
age of a hash chain, a sender attaches MAC(M, Hn−m(S)) to the m-th message
M. Subsequently, the receiver stores the MAC(M, Hn−m(S)) and M pair. When
the receiver needs to verify whether the message has been spoofed, he/she can
do it by obtaining Hn−m(S) from the sender (using P2P communication).

4.3 Mutual Authentication and P2P Communication

A protocol for mutual authentication between agents X and Y is shown in figure
4.

Agent X Agent Y

PKx, CertSKp(PKx)

Verify CertSKp(PKx)

Create Ry
PKy, CertSKp(PKy), EPKx(Ry)

Verify CertSKp(PKy)

Create Rx

Create CKxy from Rx, RY

EPKy(Rx), ECKxy(Rx), ECKxy(H
(n-l-1)(Sx))

Create CKxy from Rx, Ry

DCKxy(ECKxy(Rx)) == Rx ?

Spoofing check using H(n-l-1)(Sx) 
ECKxy(Ry), ECKxy(H

(n-k-1)(Sy))
DCKxy(ECKxy(Ry)) == Ry ?

Spoofing check by H(n-k-1)(Sy) 

Fig. 4. Protocol for mutual authentication and P2P communication

1. Agent X sends PKx and CertSKp(PKx), which is the digital certificate
provided by a portal agent P to agent Y.

2. Y verifies CertSKp(PKx) using PKp. Here, only when Y trusts P, the result
of verification evaluates to true. Next, Y generates a random number Ry and
responds by sending PKy, CertSKp(PKy), and EPKx(Ry).



3. X verifies CertSKp
(PKy) and generates a random number Rx. Next, the

agent X decrypts EPKx(Ry) using SKx. Then, X can create a P2P key (com-
mon key) CKxy using Rx and Ry. Finally, X sends EPKy

(Rx), ECKxy
(Rx),

and ECKxy (Hn−l−1(Sx)) to Y, where l is the number of messages already
sent by X as group key communication. Here, ECKxy (Hn−l−1(Sx)) is op-
tional. It is required only when Y wishes to verify the messages in group key
communication have been spoofed.

4. Y decrypts EPKy (Rx) using SKy and creates a P2P key CKxy using Rx

and Ry. Subsequently, CKxy is surely shared if and only if the decryption
of ECKxy

(Rx) yields Rx. Finally, Y responds by sending ECKxy
(Ry) and

ECKxy
(Hn−k−1(Sy)), where k is the number of messages already sent by Y as

group key communication. ECKxy (Hn−k−1(Sy)) is also optional. Moreover,
Y can verify whether the messages in group key communication have been
spoofed using MAC(M,Hn−i−1(Sx)) generated using Hn−i−1(Sx), wherei >
l.

5. X decrypts ECKxy
(Ry). Subsequently, CKxy is surely shared if and only

if the decryption of ECKxy
(Ry) yields Ry. X can also verify whether the

messages in group key communication have been spoofed.

Thus, X and Y share the P2P key CKxy and can exchange partner-limited
information securely between them in P2P fashion.

4.4 Considerations of a Hierarchical Community Structure

There are two types of a community structure; upper communities handle im-
portant information and lower communities handle important information. For
example, the hierarchical community structure representing a company orga-
nization handles important information in executive meetings than one in the
meeting in each section. However, the community comprising friends (e.g., mixi)
handles important information in the lower communities. Thus, security require-
ments differ with the type of community structure.

A portal agent manages this type of security requirement as a policy. When
an upper community handles important information, the portal agent prohibits
to forward group key communication messages from the upper community to the
lower communities. On the other hand, when lower communities handle impor-
tant information, the portal agent prohibits to forward group key communication
messagess from the lower community to the upper community. Note that if an
agent expricitly specifies that message forwarding to an upper/lower community
should be allowed, the policy will be neglected.

We have to also consider group key and P2P communications between agents
belonging to different communities. These communications are kept secure by
formulating an agreement between the communities. In the process of agree-
ment, portal agents P and Q of each community exchange each public key PKp

and PKq, and change their policy to allow message forwarding from the op-
posite community. Consequently, agents belonging to different communities are
able to authenticate each other and share a P2P key. They can, thus, do P2P



communications securely (left panel in figure 5). Moreover, when lower communi-
ties handle important information, group key communication messages between
agents belonging to different communities should be protected. Therefore, the
portal agents have to share a P2P key. Then, the messages exchanged between
the communities are protected by encryption using the P2P key (right panel
in figure 5). Thus, messages exchanged between agents belonging to different
communities are protected.

Exchange PKp, PKq
Portal P Portal Q 

Agent X

Agent Y

X/Y authenticates Y/X by using PKq/PKp

and they share the P2P key CKpq

Portal P Portal Q

EGKp(M)
EGKq(M)

ECKpq(M)

Fig. 5. Mutual authentication and P2P key sharing between agents beloing to different
communities (left), and group key communication between agents belonging to different
communities (right)

5 An Application Example

Nowadays, various business matching services are being actively used and gain-
ing popularity [2, 9]. Since these services are developed as Web-server-based sys-
tems, all information is stored on the Web site. Thus, companies may not be
willing to use sensitive information for business matching. Therefore, a P2P-
based system is more suitable for business matching services. Therefore, we
implemented the proposed security mechanisms using Java and developed a
business matching system for small-and-medium-sized companies (http://www-
al.is.kyushu-u.ac.jp/Kodama/ACN/index.html). This system are working well
now.

In the developed business matching system, the requirements for participa-
tion in a community are ID and a password pair check. A company can obtain the
ID and password by closing a contract with the administrator of the community.
The top community comprises two sub-communities, software and semiconductor
community; semiconductor community consists of 12 small communities (figure
6).

An agent participates in the community, exchanges information, and ad-
vances business matching semi-automatically. There are two steps in business
matching: The first step involves finding candidate business partners from within
the community; The second step involves agreeing on terms and contracting the



Design Semiconductor
Development

Logic

Core

Jimnet

Myue DesignAlt
SysJey

Nikko Electronics

Matsuki

IC maker

Foundry Assembly
contractor

Tool

Production
engineering

Equipment

Test
contractor

Electronic
parts

Software
developer

Test 
engineering

Management
consultant

Fig. 6. The community structure for the business matching system

business. The first step requires group key communications for restricting in-
formation access to within the community. In the second step, more important
information related to the contract is exchanged, therefore, this information
should be protected from others by P2P communication. Thus, a company can
advance business matching while protecting information.

6 Conclusion

In this study, we have designed and implemented security mechanism for a hi-
erarchical community-based multi-agent system. The proposed system realizes
the following: (1) protection of information based on four levels of information
security, (2) each community can define unique requirements for participation,
and (3) two anti-spoofing methods. Furthermore, we have considered a practical
use case, and our security mechanisms can be implemented using Java classes.
We are doing the performance tests now. The result of the performance tests
will be also shown in this paper, if accepted.

Acknowledgments

This research was supported by the Strategic International Cooperative Pro-
gram, Japan Science and Technology Agency (JST), and the Strategic Informa-
tion and Communications R&D Promotion Programme under grant 052310008.



References

1. K.Berket, A. Essiari, A. Muratas. PKI-Based Security for Peer-to-Peer Information
Sharing. Prof. of 4th International Conference on Peer-to-Peer Computing, pp. 45–
52, 2004.

2. Business Mall. http://www.b-mall.ne.jp/.
3. A. Detsch, L. Gaspary, M. Barcellos, G. Cavalheiro. Towards a Flexible Security

Framework for Peer-to-Peer based Grid Computing. Proc. of the 2nd workshop on
Middleware for grid computing, pp. 52–56, 2004.

4. FIPA MAS Security white paper. http://www.fipa.org/index.html.
5. Groove. http://www.groove.net/.
6. GT Security (GSI). http://www.globus.org/toolkit/security/.
7. V. Gunupudi, S R. Tate. SAgent: A Security Framework for JADE. Prof. of 5th

International Joint Conference on Autonomous Agents and Multiagent Systems,
pp. 1116–1118, 2006.

8. Java Cryptography Extension (JCE). http://java.sun.com/products/jc.
9. Jetro TTPP. https://www3.jetro.go.jp/ttppoas/indexj.html.

10. T. McDonald, A. Yasinsac. Application Security Models for Mobile Agent Systems.
Prof. of International Workshop on Security and Trust Management, pp. 38–53,
2005.

11. T. Mine, D. Matsuno, A. Kogo, M. Amamiya. Design and Implementation of Agent
Community Based Peer-to-Peer Information Retrieval Method. Cooperative Infor-
mation Agents VIII, LNAI 3191, pp. 31–46, 2004.

12. mixi, http://mixi.jp/.
13. S. Poslad, M. Calisti, P. Charlton. Specifying Standard Security Mechanisms in

Multi-Agent Systems. Trust, Reputation and Security: Theories and Practice,
LNCS 2631, pp. 227–237, 2003.

14. Project JXTA. http://www.jxta.org/.
15. H. Tian, S. Zou, W. Wang, S. Cheng. A Group Based Reputation System for P2P

Networks. The 3rd International Conference on Autonomic and Trusted Comput-
ing, LNCS 4158, pp. 342–351, 2006.

16. J. Tsai, L. Ma. Security Modeling of Mobile Agent Systems, J. of Ubiquitous
Computing and Intelligence, Vol.1, 73–85, 2007.

17. D. Wallach. A Survey of Peer-to-Peer Security Issues. Software Security - Theories
and Systems, LNCS 2609, pp. 253–258, 2003.

18. G. Zhong, S. Amamiya, K. Takahashi, T. Mine, M. Amamiya. The Design and
Implementation of KODAMA System. IEICE Transactions INF.& SYST., Vol.E85-
D, No.4, pp. 637–646, 2002. e/.


