
Agent-Community-Network-based Business
Matching and Collaboration Support System

Tsunenori Mine1, Kousaku Kimura2, Satoshi Amamiya1, Ken’ichi Takahashi3,
and Makoto Amamiya1

{Faculty2, Graduate School1} of ISEE., Kyushu University
744 Motooka, Nishiku, Fukuoka 819-0395, Japan

{mine,kimura,roger,amamiya}@al.is.kyushu-u.ac.jp
Institute of Systems & Information Technologies/KYUSHU3, 2-1-22 Momochihama,

Sawara-ku, Fukuoka 814-0001, Japan
takahashi@isit.or.jp

Abstract. Business matching and collaboration support systems are
useful, in particular for small-and-medium companies. Most of them de-
veloped so far are based on the server-client architecture and provide
their services on Web servers. They require special administrative facili-
ties, ask users to upload their data for matching between business needs
and seeds, and leave to themselves peer-to-peer communication or negoti-
ation between matched companies. Considering these problems, we have
been developing an agent-community-network-based business matching
and collaboration support system. Our system requires neither any spe-
cial administrative facilities nor uploading user data to a special server. It
furthermore supports secure peer-to-peer communication between users.
It is implemented with multi-agent Kodama framework.

1 Introduction

Nowadays, various sorts of matching systems such as business matching(e.g. [9,
10]) or human resource matching(e.g. [7]) are getting popular and actively used.
Since they are developed as Web-server-based systems, flexible access and useful
interface are available. However, they have the following problems :

(1) Special administrative facilities are required for the system administrators.
(2) The users have to upload their data when updating it. The upload costs are

neither cheap nor negligible.
(3) As the number of users accessing a system increase, the load taken by the

system becomes heavier.
(4) Administrators of the system can easily eavesdrop the data stored or com-

munications exchanged on it.

Considering these problems, we believe that the business matching and col-
laboration support system should be managed by a user him/herself so that
his/her information used for matching and negotiation can be exchanged only

with his/her negotiation partners. The systems accordingly should be constructed
as distributed ones and support make one-to-one and one-to-many communica-
tion with one another. These problems are wedded to security issues. When
making one-to-one or one-to-many communication by e-mail, we face lots of
problems such as SPAM, phishing mail attack for public or targeted attack. In
addition, since current e-mail systems are ever based on the server-client model,
a server administrator can easily eavesdrop e-mail messages on the server. The
appearance of this kind of attack makes an appeal of necessity of secure systems
that support secure peer-to-peer communication between users.

Another issue is to create a community where users with the common inter-
ests or aims stay together and efficiently communicate on the topics related to
the community. The community can facilitate the secure exchange of privacy-
related information by restricting communications within a community. There-
fore business matching and collaboration support system should be constructed
as a community-based system and be able to support secure peer-to-peer com-
munication in and between communities. Such communities should have a hier-
archical structure so that they can represent real societies. There is a work[1]
which discusses a method constructing an e-market place based on peer-to-peer
network by combining some of existing technologies and methods, in particu-
lar, a method for realizing peer-to-peer communication based on technologies of
JXTA Project1. However they still have an issue to realize one-to-many commu-
nications and do not discuss the problems for constructing a practical system,
which are the main subject of this paper.

In this paper, we present Agent-Community-Network-based Business Match-
ing and Collaboration Support System. We aim to develop an agent-oriented
technique that is useful to realize a ubiquitous computing environment at a low
cost. For our purpose, we are developing a business matching and collabora-
tion support system for small-and-medium sized companies as a case study. Our
target users are those who do not have enough knowledge on a mechanism of
information exchanging between computer systems. We would like our system
to enable the users get information they need without being aware of secu-
rity mechanisms, places of information providers and mechanisms of exchanging
information, and enjoy various services that are helpful for their business activi-
ties. Although there are several choices to meet these requirements, we choose a
multi-agent-based system, in particular, Multi-agent Kodama framework because
it originally supports a hierarchical community structure, and has flexible char-
acteristics and configuration options. Moreover, Kodama separates agent name
retrieval and agent physical address retrieval, which suggests availability of an
efficient retrieval technique for the former retrieval according to an application of
the system and an efficient node-lookup or message delivering technique for the
latter retrieval. We currently adopt the agent-community-based peer-to-peer in-
formation retrieval (ACP2P) method [5] as the former retrieval method and the
node lookup and routing method based on the Ordered-Tree-with-Tuft (OTT)
shaped overlay network as the latter retrieval[4, 3].

1 http://www.jxta.org/

The system offers the following functions:

◦ Secure, robust and efficient one-to-one and one-to-many communication en-
vironment

◦ Automatic and semi-automatic matching between business supplier and de-
mander

◦ Creating man-to-man and business-to-business communication networks based
on business trading history

The system is being implemented with Multi-agent Kodama framework[11].
Kodama provides user community creation function, and secure and robust one-
to-one and one-to-many communication in and between communities. Matching
between supplier and demander is carried out by peer-to-peer communication
between Kodama agents.

The rest of the paper is organized as follows. Section 2 describes the charac-
teristics of the system and Section 3 discusses an experimental system. Section
4 concludes and describes our future work.

2 Characteristics of System

2.1 Multi-Agent Kodama

The system is implemented with Multi-Agent Kodama (Kyushu university Open
& Distributed Autonomous Multi-Agent) framework [11]. Kodama comprises hi-
erarchical structured agent communities based on a portal-agent model. A portal
agent (PA) is the representative of all member agents in a community and allows
the community to be treated as one normal agent outside the community. A PA
has its role limited in a community, and the PA itself may be managed as an
agent by another higher-level portal agent. A PA manages all member agents
in a community and can multicast a message to them. Any member agent in a
community can ask the PA to multicast its message. All agents form a logical
world which is completely separated from the physical world consisting of agent
host machines. That means agents are not network-aware, but are organized and
located by their places in the logical world. This model is realized with the agent
middle-ware called Agent Communication Zone (ACZ for short). ACZ is primar-
ily designed to act as a bridge between distributed physical networks, creating
an agent-friendly communication infrastructure on which agents can much easily
and freely be organized in a hierarchical fashion. One or more Kodama agents can
act on one ACZ. ACZ is also designed to realize a peer-to-peer communication
between agents. A Kodama agent consists of a kernel unit and an application
unit. The kernel unit comprises the common basic modules shared by all Kodama
agents. The application unit comprises a set of plug-in modules, each of which
is used for describing and realizing a specialized or original function of agents.
As described later, security, GUI and matching modules are plugged-into the
application unit.

2.2 Security Functions

Even in a community, secure communication is indispensable because the com-
munity usually consists of other companies. The main characteristics of our
security functions are as follows:

1. Examination of applicants’ qualifications and making a contract:
when joining a community, examination of applicants’ qualifications is done
by the representative of a community, which would be a community facility.
User (applicant) registration will be done by making a contract with the
facility. After its registration, the user will receive a pair of a login ID and
a password to join the community. Both the login ID and the password
are issued to an authority agent of the community which is called portal
agent. The portal agent authenticates them and permits the enrollment to
the community. At that time, the portal agent gives the authenticated agent
both a unique name of the community and a group key, which is one based on
the Symmetric-Key Cryptosystem (SKC). The authentication is performed
according to the Public-Key Cryptosystem (PKC).

2. Encrypted communication in a community : in the community, two
communications, one-to-one (or peer-to-peer) and one-to-many communica-
tions, are available. For the peer-to-peer communication, a P2P key which
is a session key based on SKC is used. The key is generated by exchang-
ing random numbers between two peers. Exchanging the random numbers
is done based on PKC. For one-to-many communication, a group key given
by a portal agent is used. The group key is updated when any agent joins or
leaves the community. Fig. 1 depicts one-to-many communication with the
group key in the left-hand side, and peer-to-peer communication with the
P2P key in the right-hand side.

Encryption
with Group Key

Group

Key

P2P
key

P2P
key

P2P

key

Encryption
with P2P Key

Communication obeys

community policy

Fig. 1. Communication with Group Key(left) and P2P Key(right)

Business
Business

Business

BusinessBusiness

ＤＢ ＤＢ

ＤＢ

ＤＢ

ＤＢ

Ａ

B

C

D

E

ＸＭＬ ＤＢ

Portal Agent managing
names & addresses of
agents in a community

｛Ｅ｝

｛Ｅ｝ ｛Ｅ｝

｛Ｅ｝

｛A,B｝

recording
only the
info. that

user
wants

｛Ａ，Ｂ，Ｃ，Ｄ，Ｅ｝

Business Community

Fig. 2. Matching between a query and an acceptance condition in a business community

Although a community is a closed environment, all the members do not
always have collaborative relationships with one another, rather they might
have competitive relationships. Even if all the community members belong
to a common group sharing the benefits such as the same company, there
would be a distinction of information according to the organization hierarchy
of the group2. Encrypted communication in the community is consequently
indispensable. The system does not employ anonymity of users because a
target of the system is a business market. Therefore the company names or
user names are attached on the query and responses. However users can keep
other information private if they want.

Fig. 1 shows communication images with the group key and the P2P key.
Although each of the characteristics is not new, their combination is important
for business matching and collaboration on this system. The detailed discussion
of the security mechanisms adopted by the system is described in [8].

2.3 Matching Functions

When a user makes a business question, his/her agent will deliver it to the
agents in the communities specified in the question. The agent that received the
question checks it up with its acceptance condition created by its user. If there
is one or more matched items in it, the agent creates and returns an answer to
the query-sender agent.

With this matching, even though a user does not know the addresses of
agents related to the user’s query, the user can, by this matching function, get a
2 This would strongly depend on a community structure.

list of their addresses in the communities specified in the query. This would be
considered as a kind of “know-who”.

In addition, receiving reply-messages from matched agents, a user can seam-
lessly continue to send another message to the users of the agents. In Fig. 2,
agent E receives reply-messages from agent A and B. So, the user of agent E
can continue to send another query to the user of agent A or agent B. On the
other hand, in conventional systems, getting a set of agent addresses and send-
ing messages by e-mail or something are separated. Actually, many people feel
self-conscious about sending an e-mail message to a user whom they have no
personal acquaintance with.

2.4 Look-up of Delivery Address from Business Trading History

Business dealings generally prefer known and reliable clients to new ones. An
agent in our system accordingly keeps all its trading records in its XML database
so that it can easily search for the clients and their detail of the transaction. The
information registered in the database is a set of pairs of business query and its
answer. When a business query is created, business transaction relevant to it will
be searched from the database with XQuery consisting of a business item name
and content in the query. The searched results are displayed in a ranking list
according to their score calculated for the relevancy. Users will choose addresses
for delivery in the list and send the query to the addresses. If the users can not
find any address that they want to send or if they want to find new clients that are
not in the history, they will issue the query to all the members of the communities
specified in the query. According to the query and answer operations using the
trading history, we believe that business to business or person to person relation
networks will gradually be created. This basic idea is based on the knowledge of
the ACP2P method [6].

3 Experimental System

3.1 Overview

Our system is compact, easy to be moved with a USB memory and works on any
computer system with a Java VM environment. Since a lot of USB memories
nowerdays supports an encryption function, any user can use it with ease. Fig.
3 depicts the menu window of a user’s agent system, which one of GUI modules.
They have 4 menu buttons which are for making an acceptance condition, making
a business question, showing a list of messages returned to business questions
issued by a user and showing a list of business questions received.

Fig. 4 depicts a list of issued business questions (top), a condition matched
between a business question and an acceptance condition (middle), and an in-
quiry window (bottom). With the inquiry window, a user that issued the business
question can make free communications related to the matched condition with
the user that returned the message. Both users can send a message with attached

Software Development Field Business Matching Support System

On line
Company Info. &

Acceptance Conditions
Business question

A list of messages

returned to business

question issued

A list of business

questions received

15 messages are received

49 messages are received

Agent’s Action log window

Logout
could not send a message. to be sent later.(17:27:12)
sending a message(ID:c6p0ab_200712051) to NAL co. ltd (17:27:12)
Since a business question is matched with acceptance conditions,

a reply-message is sent to NAL col. ltd(17:27:12)

Fig. 3. Menu Window

files. As well as the packet transmission system, the attached files are splitted
into some numbers of small-sized objects, and issued to a target agent. Thus this
does not cause trouble even if we take a star-shaped network toppology to be
mentioned later in Section 3.3.

3.2 Internal Structure of the System

The structure of the system is shown in Fig. 5. The system is composed of
multi-agent Kodama and its applications. All applications such as GUI mod-
ule, security module, matching module are plugged-into as Kodama application
units. They are completely separated with the Kodama kernel unit. Every data,
which is a Java object, is passed between modules through their interface. The
security functions are defined as a set of Java classes so that it can flexibly be
updated. A demander’s business question and a supplier’s acceptance condition
are defined as a CSV-like template. They can easily be exchanged according to
the business category of a company. The reason why we adopt a template-based
query and an acceptance condition is that they would easily be described by
anyone who are not good at operating computers. According to our interviews
to some company people, our decisions were empirically acceptable. Since the
system is composed of several modules that are completely separated and inde-
pendent, we can individually develop each module. That means all we need is
to aware the interface between the modules. This is one of the most important
benefits of multi-agent-based software engineering.

The business question template is almost the same as the acceptance con-
dition template except for a few items due to the difference of the viewpoint
of their positions. These exceptions are coped with by a mapping table. The
template represents a kind of small ontology of the business category. It consists
of two types of items : the items independent and dependent to the category.

Development of VoIP Flow Analysis System

Development of Pilotless Order

Receiving Software

A List of issued Business Questions

Display Delete Close

Matching

Development of VoIP Flow Analysis System

inquiry

Development of VoIP Flow Analysis System

Fig. 4. A list of issued Business Questions (top), A message matched between Business
Question and Acceptance Condition (middle), Inquiry Window (bottom)

Multi-Agent Kodama Kernel

Security

Agent-Middleware （Agent Communication Zone)

GUI Interface

GUIXML DB

Java Object

Read/Write

XML⇔Java Object

Data format
Sued-CSV

Kodama Agent

ACZ

Kodama Agent

Matching

Fig. 5. System Structure

The items independent to the category can be considered as upper ontology of
the business field, which are business category, smaller business category, sub-
ject of order, detailed description of order, purpose of order, level of fixedness
of development specification, start and end of development term, and certified
standards such as ISO9001. A set of items dependent to the business category
is domain ontology. In the case of a semiconductor development field, they are
“process”, “wafer size”, “product”, “package”, “design”, “assembly”, “test en-
gineering” and so forth. In the case of a software development field, they are
operating system, programming language, database, level of knowledge on cat-
egory of business, work place, type of engagement such as package contract or
detached service, development size, availability of subcontract and so on. Since
the two templates are similar, we will show the business question window of the
semiconductor development field in Fig. 6. A category dependent item consists
of a set of choices with a check box or a radio button and a free description
field. Each choice is composed of a header and a description field for describing
comments.

By having question templates selectable, matching between various industries
gets to be possible.

When making matching between a business question (Q) and an acceptance
condition (C), the system calculates a similarity score between them by sum-
ming the total number of matched choices in all the items considering the weight
of each item. If the item gives a free descriptive sentence field, descriptive sen-
tences in it are analyzed morphologically and summing the average number of
every matched terms in the sentences for every item between Q and C. All the
combination of items including descriptive sentence field in Q and C are tried for
matching as corresponding ones. The matched data of Q and C are handled as
one object data, which are composed of a set of pair of items. Each data has an

Business Question Template

New item can

be added.．

Send

Delivery field

Field

Subject

Content

Purpose

Product

Process

Wafer size

Package

Kinds of Design

Assembly

Test Engineering

Fig. 6. Demander’s Business Question Window

identifier (ID) to distinguish each other. The ID consists of its issued date and
a requested condition counter, whose value is set to 0 when a business question
is created. It is incremented by one for every transmission to the other agent.
Those exchanged data are transformed into an XML format and are stored into
an XML native database3. When receiving a reply-message, a system should
consider not only the similarity score, but also the frequency exchanged with
the agent returning the message in order to rank received messages. In particu-
lar, the messages returned by whom the user continues talking with should be
way up on the high level so that they can be easily looked up.

3.3 Routing

Routing between Agents When a query is issued to all the members of a
community, the query is kept by the portal agent of the community during a
given time interval so that any agent can get it even though it is not joining
the community at that time. This function is also useful for agents that newly
join the community and want to get such business questions that have already
been delivered. When a message is directly sent to a target agent which is not
logged in at that time, the message is kept at the sender agent’s database. This
is because the message is sent by peer-to-peer communication. Is it why ? If the
message would be kept by a portal agent, the message will surely be reached to
the target agent because a machine the portal agent resides will not be powered
off and the portal agent can know when the target agent logs in. In addition,
3 We currently use eXist. http://exist-db.org/index.html

the message will not be decrypted by the portal agent because the message was
encrypted by a peer-to-peer key only which the sender agent or the target agent
has. However, the message may include a heavy attached files. As the number
of such the messages increases, the load of the portal agent becomes heavier.
Consequently it causes the same problem of a client-server architecture. On the
other hand, it is true that the sender agent can not know when the target agent
will log in. In our current solution, the sender agent asks a portal agent to tell
when the target agent logs in, although the computer the sender agent resides
should not be powered off until the target agent logs in. This is trade off. In
order to let a user know whether or not a message the user issues is reached to a
target user (agent) or a message the user receives is matched with the acceptance
condition of the user, every action an agent does is presented on the display of
a menu window shown in Fig.3.

Routing between ACZs We assume that a lot of users of our system use
their computers on their private network and connect to the Internet via a NAT
(Network Address Translation) or NAPT (Network Address Port Translation)
system. Since our system provides one-to-one communication, we have to support
routing via NAT or NAPT. When an agent is starting to join a community, the
ACZ where the portal agent of the community resides keeps the connection
with the ACZ where the agent resides. Thus, the ACZ of the community portal
agent can make a communication with the the ACZs of community member
agents. When another agent joins the community, the ACZ of the portal agent
also keeps the connection with the ACZ of the agent. This constructs star-shaped
connections between the ACZ of the portal agent and the ACZs of other member
agents. Although this star-shaped routing may not be scalable, we made sure
by empirical experiments using a cluster machine with 32 Personal Computers
(PCs) that it could support 1000 agents. Supporting 1000 agents is enough for
our current objectives because the current targets are closed communities, each
of where less than 1000 members belong to.

On these experiments, we also made sure that our systems are robust when
agents of some PCs suddenly join and leave the network by powering on/off,
getting started running or falling to the sleep mode by opening or shutting the
display of a Note PC, and inserting/pulling their network cables to/from the
computers.

4 Conclusion and Future Work

This paper discussed Agent-Community-Network-based Business Matching and
Collaboration Support System. We have just finished a beta test of our system.
It suggests that this system is useful for determining business companies to
be contacted. Without meeting contact persons of a target business company
and talking to them by face to face, business people can not give credit to
the company. After meeting them, however, the system can also be used for

exchanging important information to be led to making a contract. The system
is now currently used by personnel-service business companies.

Our system has many capabilities to be applied to various kinds of fields by
changing the matching templates. In addition, not only business matching, but
also distributed SNS services or dynamic mailing list services will be supported
by the mechanism described in this paper. However we have a lot of things
to do for modifying and improving the system to realize these things. One of
our current concerns is to scale up the system. Another one is to improve the
accuracy of matching between a business question and an acceptance condition
although it requires a lot of real trials.

Acknowledgment

This research was partly supported by the Strategic Information and Communi-
cations R&D Promotion Program under grant 052310008 from the MIC, Japan.

References

1. D. R. Ferreira and J. J. P. Ferreira. Building an e-marketplace on a peer-to-
peer infrastructure. International Journal of Computer Integrated Manufacturing,
17(3):254–264, 2004.

2. K. Kimura, S. Amamiya, T. Mine, and M. Amamiya. An improvement and evalu-
ation of routing method based on OTT-shaped overlay network (in Japanese). In
Joint Agent Workshops and Symposium 2007(JAWS2007), pages (CD–ROM), 10
2007.

3. K. Kimura, S. Amamiya, T. Mine, and M. Amamiya. A Semi-structured Overlay
Network for Large-scale Peer-to-peer Systems. To be submitted to the Seventh
International Workshop on Agents and Peer-to-Peer Computing (AP2PC2008).

4. K. Kimura, S. Amamiya, T. Mine, and M. Amamiya. A new infrastructure con-
struction method for building multi-agent-based system (in Japanese). The IEICE
Transactions, J90(9):2388–2397, 9 2007.

5. T. Mine, A. Kogo, and M. Amamiya. Agent-community-based peer-to-peer infor-
mation retrieval and its evaluation. Systems and Computers in Japan, 37(13):1–10,
11 2006.

6. T. Mine, D. Matsuno, A. Kogo, and M. Amamiya. Design and implementation of
agent community based peer-to-peer information retrieval method. In The eighth
International Workshop CIA 2004 on Cooperative Information Agents (CIA2004),
volume LNAI 3191, pages 31–46, 9 2004.

7. RikuNavi. http://www.rikunabi.com/, 2006.
8. K. Takahashi1, Y. Mitsuyuki, T. Mine, K. Sakurai, and M. Amamiya. Design and

implementation of security mechanisms for a hierarchical community-based multi-
agent system. In the 10th Pacific Rim International Workshop on Multi-Agents,
11 2007.

9. The Business Mall. http://www.b-mall.ne.jp, 2006.
10. JETRO TTPP http://www3.jetro.go.jp/ttppoas/indexj.html, 2006.
11. G. Zhong, S. Amamiya, K. Takahashi, T. Mine, and M. Amamiya. The design and

application of kodama system. IEICE Transactions INF.& SYST., E85-D(04):637–
646, 4 2002.

