
A Semi-structured Overlay Network for
Large-scale Peer-to-peer Systems

Kousaku Kimura1, Satoshi Amamiya2, Tsunenori Mine2, and Makoto
Amamiya2

{Faculty2, Graduate School1} of ISEE., Kyushu University
744 Motooka, Nishiku, Fukuoka 819-0395, Japan

{kimura,roger,mine,amamiya}@al.is.kyushu-u.ac.jp

Abstract. Peer-to-peer (P2P) communication and computing frame-
works are important for constructing robust large-scale distributed sys-
tems. Overlay network systems use distributed hash-table (DHT) to pro-
vide scalable and efficient node search capabilities. However, the DHT-
based method has a problem for the maintenance cost of dynamically
changing large-scale-network, in which nodes are frequently joining and
leaving. This paper proposes a novel technique of P2P communication
path management. The proposed technique devises a robust semi-structured
overlay network called Ordered Tree with Tuft (OTT for short). OTT
provides not only efficient node searching, but also low-cost self-maintenance
capabilities for the dynamically changing network. In this method, join-
ing and leaving of a node are managed in O(1) with high probability.
Furthermore, the proposed OTT-based technique can find and construct
a path shorter than that on the normal ordered tree, by setting up bypass
links between remote nodes on OTT.

1 Introduction

Peer-to-peer (P2P) message communication and computing techniques are im-
portant to develop large-scale distributed systems. Multiagent systems, in which
agents are distributed over the large scale network like Internet, particularly
need a flexible P2P message communication environment.

Various P2P systems have been proposed so far. For instance, Gnutella [1]
and Freenet [2] are in practical use for file exchange and Skype [3] is used as
the IP telephone system. In P2P systems, every node is connected only to a
few neighbor nodes, and, for sending a message to a distant node, the sender
node asks neighbor nodes to relay the message to the destination node. In this
framework, it is important for the P2P system in dynamically changing network
to guarantee the soundness in that the message arrives at the destination in safe.

Various kinds of DHT-based P2P algorithms [4][5][6][7][8][9][10][11][12] are
proposed to solve the problem by configuring the structured overlay network. In
these methods, assuming a key is given, each node or content is mapped onto
the structure to optimize the performance of contents search. The search cost in
these methods is O(log N) for the N-node network. In DHT, when a node joins

or leaves the network, its neighbor node has to be selected and its routing table
has to be modified to maintain the routing paths in the structured network. If
the node fails to keep track of the change, the search process will take more
time or the search will be in failure. In general, as the network is larger, the
maintenance cost becomes higher. For the large-scale network, the maintenance
will become the bottleneck when many nodes frequently join and leave. This
bottleneck is serious in practical networks. If the maintenance procedure spreads
over the network and thus takes more time, the search will frequently fail. If the
maintenance can rapidly be done without spreading over the network, the search
can be safer and the network will be more robust.

This paper proposes a semi-structured overlay network which uses a new
network topology called Ordered Tree with Tuft (OTT for short) to solve the
problem of the maintenance cost for the dynamically changing large-scale net-
work. Assuming every node of OTT to be given a unique ID, OTT is configured
as an ordered tree according to the ID. Each node of the ordered tree has a
set of ring structured nodes, which is called a tuft. Furthermore, each node se-
tups a bypassing route by caching its neighbor node on bypassing route that
has been used in the previous communication. Each node of OTT maintains its
neighbor nodes, and if one of the neighbor nodes is lost, it searches other paths
and updates its neighbor nodes on the paths. The OTT method is effective in
performance-by-cost of the route maintenance, because each node can maintain
in O(1) with high probability as long as tufts remain. and can find paths to a
destination node, whose length is much less than log N for OTT with N nodes
in practical use.

This paper describes the structure of OTT, and gives the method of mes-
sage routing, path searching and routing table maintenance. The evaluation by
software simulation is shown and discussed.

2 Structure of OTT

OTT is an overlay network configured on the physical network (e.g. TCP/IP
network). OTT is constructed with an ordered tree and ringed tufts. The ringed
tuft is attached to each node of the ordered tree. Figure 1 (left) shows an example
of OTT. We call the node of the ordered tree a tree-node and the node of the
ringed tuft a ring-node.

OTT takes advantage of features of the ordered tree structure and the ring
structure. The complexity of node insertion, deletion and search are O(log N) in
the ordered tree with N nodes. In contrast, for the ring of size M , the complexity
is O(1) for both node insertion and deletion and O(M) for search.

2.1 ID and Adjacent Table

Every OTT node has a unique ID. The ID is given as a tuple of hashed values
(u, v). The left child of each tree-node has a u value smaller than that of the
parent tree-node, and the right child has a u value larger than that of the parent

u=184

u=112 u=257

(112,3)

(112,4)

(112,0)

(112,5)

(112,7)

(112,1)

(112,2)

(112,6)

(184,2)

(184,1)

(184,7)

(184,0)

(184,4)

(184,6)

(184,3)

(184,5)

(257,7)

(257,0)

(257,1)

(257,3)

(257,2)

(257,5)

(257,4)

(257,6)

u=314

(314,1)

(314,2)

(314,5)

(314,6)

(314,3)

(314,0)

(314,4)

(314,7)
(112,3) (184,2) (257,7)

(314,1)

(184,1) (184,5)

PAR
ENT

LEF
T RIGHTC

W

C
C
W

(76,0)

(123,6)

(41,7)

(182,4)

Fig. 1. Example of OTT (left) and connected nodes of (184,2) (right).

tree-node. Each tree-node has a ringed tuft. All nodes in the tuft have the same u
value as its tree-node, and each ring-node is identified by its v value. Each node
carries an Adjacent Table (AT for short) and a Link Table (LT for short) in
order to maintain P2P communication paths on OTT. AT holds IDs of adjacent
nodes in OTT, i.e. parent node (PARENT), left child node (LEFT), right child
node (RIGHT), clockwise adjacent node in the ring (CW) and counter clockwise
adjacent node in the ring (CCW). Figure 1 (right) and table 1 (left) show an
example of OTT and AT for the node (184, 2), respectively.

2.2 Link Table (LT)

LT is used for message routing and path searching. All connections of each node
are held in LT. Successor nodes held in LT are on the path to its destination.
Each LT entry holds several candidates of successor node to the same destination.
Thus, every node holds multiple routes to the same destination, and if the current
route does not work in some reason, another successor node is selected from the
stored candidates. Note that all nodes in AT are also held in LT.

LT also holds successor nodes other than adjacent nodes. We call such a node
a bypass node. The number of bypass nodes is set to low ratio of the number
of the whole LT entries. If the number of bypass nodes is set to the larger, the
shorter path will be found, but path search messages will increase and flood over
OTT. Therefore the number of bypass nodes should be decided at the practical
usage of OTT1. Table 1 (right) shows the LT of the node (184, 2).

2.3 Path Search and Min-Max Value

Naive Path Search Method When a sender node holds no path information
to a destination node, the sender node searches and sets up the path information
to the destination. The search process begins at the sender node. Suppose the ID
of the destination node is (ud, vd). The search message is delivered to its successor
nodes, i.e. adjacent nodes and bypass nodes. When a successor node n0 with ID
(u0, v0) receives the message, it checks whether ud = u0. If ud = u0 then search
1 In our experiment, the number of bypass nodes is set from 16 to 32 for the whole

numbers of LT entries between 1024 and 8192.

Table 1. Adjacent Table (left) and Link Table (right) of (184,2).

Direction ID
LEFT (112,3)

RIGHT (257,7)
PARENT (314,1)

CW (184,5)
CCW (184,1)

Desti-
nation

min-max
value

Candidate successor nodes
1st 2nd 3rd 4th

self < 82, 272 > N/A N/A N/A N/A
(112,3) < 82, 135 > (112,3) - - -
(257,7) < 240, 272 > (257,7) - - -
(314,1) < 82, 423 > (314,1) - - -
(184,5) < 82, 272 > (184,5) - - -
(184,1) < 82, 272 > (184,1) - - -
(76,0) < 50, 78 > (76,0) - - -
(123,6) < 121, 125 > (123,6) - - -
(41,7) - (112,3) - - -
(182,4) - (257,7) (112,3) - -

message is delivered into ringed tuft and each ring-node checks whether vd = v0.
Otherwise, the search message is delivered to the left child node if ud < u0, or
to the right child node if ud > u0.

At the same time, the search message will be delivered to its parent node.
In this search process, each node will receive the same search message multiple
times. In order to avoid redundant search message propagation, each node, when
receiving the same search message, discards the redundant message.

Efficient Path Search with Min-Max Value If the search message is deliv-
ered to all the adjacent and bypass nodes, the search messages will flood over
OTT. In order to avoid the flooding, we make each tree-node hold a pair of mini-
mum and maximum of u values of its subtree. We call it the min-max value. Sup-
pose a node n0 has its own u value u0 and the min-max value [u0−min, u0−max].
When the node n0 receives the search message to the destination node nd whose
ID is (ud, vd), if ud < u0−min ∨ u0−max < ud the node n0 never delivers the
search message into its subtree, because the the target node nd is not in the
subtree. Thus, the flooding of useless search messages is suppressed.

The min-value (max-value) is set to the min-value (max-value) of its left
(right) child. If the node has no left (right) child it is set to the u value of the
node itself. When the left or right child is replaced with another node or changes
its min-max value, the min-max value is recalculated, and the new value is
transmitted to all the connected nodes.

3 Protocols

The topology of OTT keeps down the reconstructing cost for a dynamically
changing network in which nodes frequently join and leave. In this reconstruction
process, mini-max value calculation and its updating messages are refrained from
spreading out beyond the neighbor nodes. In the following description, we assume
that every node of OTT is assigned to a distributed platform, which is connected
to a physical network (e.g. Internet), and every procedure on the node runs on
its platform2.
2 In our case, multiagent Kodama[13] is used as the platform.

(1) (2)

(3) (4)

(x,y)

if x<uif x==u

(p,q)

(u,v)

(u,v)

if (p<)u<x

(5)

LE
FT

RIGHT
C
W

Node N

co
nn
ec
t

Root Node

c
o
n
n
e
c
t

connect

(1) (2)

(4)

(6)

(3) (5)

Fig. 2. Join (left) and Leave (right) procedure.

3.1 Joining of Node

When joining, a new node searches for its position in OTT using its ID. In the
course of the search, the min-max value of each node is updated if necessary.
Figure 2 (left) depicts the procedure when a new node joins OTT. The detail of
the procedure is as follows:

(1) When joining OTT, the joining node is connected to another node on a list
given by a bootstrap node like [7] or a Web server.

(2) The joining node sends the search message, which consists of its address and
ID, toward the OTT root node.

(3) The search message is transmitted from the root through tree-nodes of OTT
until the appropriate position to insert the node is found. When a tree-node
n0 receives the message, it compares the u value of the joining node (say uj)
with that of itself (say u0). If uj = u0 then the appropriate position to insert
the node is found. Otherwise, if uj > u0 (or uj < u0), the search message is
sent to the right (or left) child node.

(4) When the position is found, the joining node is re-connected from that po-
sition and disconnects the node which was connected at the step (1).

(5) Furthermore, the joining node is placed between the tree-node and the right
next ring-node. At the same time, the min-(or max-)value of the node n0 is
replaced with uj if uj < min-value (or uj > max-value).

If the tree-node of uj = u0 is not found, the joining node is a virgin. In this
case, the virgin node is connected to the leaf tree-node as its right (or left) child

if uj > u0 (or if uj < u0). Both the min- and max-values of the joining node are
set to uj .

When a node joins, the address of all co-existent nodes in its tuft are mem-
orized (in the platform of the node), and the position search process is cut out
unless the tuft has disappeared when the node once left out joins again.

3.2 Leaving of Node

We assume OTT uses TCP as its physical network protocol. OTT has the two-
way connection between connected nodes, and every node can figure out the
status of its connected node. Therefore, the leaving node is quickly detected by
its connected nodes, and the OTT reconstruction immediately begins.3

Figure 2 (right) depicts six cases of leaving. When a node detects its adjacent
node is leaving, it performs one of the following actions according to the position
of the leaving node. In any cases, if a node changes its min-max value, the
modified value is notified to all its adjacent and bypass nodes.

(1) If the leaving node is a ring-node, its right next ring-node (CW node) is
connected to its left next ring-node (CCW node).

(2) If the leaving node is a non-leaf tree-node and has its tuft, the right next
ring-node comes to the position of the tree-node and the replaced node is
connected to its left next ring-node (CCW), left child (LEFT), right child
(RIGHT) and parent (PARENT) tree-nodes.

(3) If the leaving node is a leaf and has no tuft, nothing is done.
(4) If the leaving node is a tree-node with only one child and has no tuft, its

child node comes to the position of the tree-node, and the replaced node is
connected to its parent tree-node (PARENT).

(5) If the leaving node is a tree-node with both children and has no tuft, then, if
its right (or left) child has no child, the right (or left) child is connected to the
parent (PARENT) and left (or right) child (LEFT (or RIGHT)) tree-node
of the leaving node.

(6) Otherwise, the node with the largest u value is searched in the left subtree
and comes to the position of the leaving node, and the connection of the
replaced node is modified.

In the above procedure, each node notifies the information of its AT to the
nodes registered in its AT and LT so that the nodes keep the connection infor-
mation. By this, when a node leaves, only its adjacent nodes reconstruct their
connections, except for the case (6), as shown in Figure 2 (right). The case (6)
requires searching for a node which has the greatest u value in the subtree.
However the case (3), (4), (5) and (6) will seldom occur as long as OTT never
declines so much as tufts disappear.

Even if a node happens to be in the case that all its successor nodes disappear,
the node will be able to take the join procedure as a virgin node.
3 If the UDP connection is used, periodical confirmation of the node status is required.

In this case, detection of node leaving from the network might be delayed.

3.3 Routing

When sending a message to a destination node, the sender node issues the mes-
sage to its highest-ranked successor node. If the successor node returns no ac-
knowledge, the next highest-ranked successor is chosen and tried again.

The successor node, when having received the message, checks whether the
node itself is the targeted destination. If true, the the routing process terminates.
Otherwise the successor node relays the message to its highest-ranked successor
node. This message relaying continues until the message arrives at the destina-
tion node. If any paths to the destination are broken off, the failure message is
returned to the sender node, and the sender node begins the path search.

3.4 Path Search

The path search is conducted by two methods: a normal-ordered-tree search and
flooding-and-subtree search. The normal-ordered-tree search is carried out on
OTT without using bypass links. The flooding-and-subtree search repeatedly
issues a search message, using bypass links on OTT, from node to node until the
value of TTL (Time To Live) becomes 0.

Assume here the ID of the targeted destination node nd is (ud, vd). When a
node n0 receives the search message, n0 performs the following procedure:

(1) If the node n0 is the destination, i.e. (u0, v0) = (ud, vd), the node returns an
answer of the success to the sender node.

(2) Otherwise, if the node n0 is directly connected to the destination node nd,
it sends the message to nd.

(3) Otherwise, if u0 = ud∧v0 �= vd , the node n0 passes the message to the right
next ring-node in its tuft to search for the node nd with vd.

(4) Otherwise, if the node n0 finds the successor node ns from the candidate
successor nodes (say ni’s) in LT, n0 sends the message to node ns. Here, the
node ns has the min-max value [us−min, us−max] such that
(us−min ≤ ud ≤ us−max) ∧ (us−max − us−min = min{ui−max − ui−min}).

(5) Otherwise,
(a) When performing the normal-ordered-tree search, the node n0 sends the

message to its adjacent nodes held in AT: If n0 is a tree-node, it sends
to the PARENT node, or if n0 is a ring-node, sends to the CW node.
TTL value is not counted in this search.

(b) When performing the flooding-and-subtree search, if TTL > 0, n0 sends
the message to all the bypass nodes after decrementing TTL.

The difference between the normal-ordered-tree search and the flooding-and-
subtree search is only in step (5), which, however, makes considerable difference
in performance. If we use the two methods at the same time, the search is sound
and can find a shorter path, even though it might make the search cost higher.
Furthermore, by combining the two methods, multiple paths can be found, and
each node on the paths can select several successor nodes on the shortest path
and registers them in LT as the highest-ranked successor candidates.

4 Evaluation

We implemented a software simulator of the OTT method and evaluated for a
large-scale network of 4194304(= 222) nodes.

In the simulation, the node ID is given by the following ID allocation strategy:
The maximum ring size is set to m. When a new node is created, if the ring size
is less than m then its ID is set to the same u value as its tree-node and a unique
v value in the tuft ring. Otherwise, another u value is selected. In the evaluation,
we set m = 8, and the ratio of tree-node size to the total ring-node size is 1 to 7.
For instance, in the OTT of 128 nodes, the number of tree-nodes is 16, and the
total number of ring-nodes is 112 (= 7 ∗ 16). In the following discussion, we use
two parameters N and B, where N is the number of nodes in OTT, and B the
number of bypass links of each node, respectively. Each node makes B bypass
links to nodes chosen randomly.

4.1 Cost Performance

First, we evaluate the maintenance cost and path search cost. Here, the cost is
defined as the total number of message transfers occurred between nodes during
link connection, link disconnection and communication.

Here, N is the number of tree-nodes, B is the number of the bypass links
held in a node, and k is the average number of nodes needed to modify their
min-max value.

Joining of Node The cost of each step in the joining process described in
Section 3.1 is estimated on average as: 1 for the step (1), log N for the step (2),
2 log N + k × B for the step (3), 1 for the step (4) and 1 for the step (5) when
the joined node is a tree-node or 2 when the joined node is a ring-node.

Figure 3 (left) plots the maintenance cost for the first time joining nodes
(virgin nodes), where N varies from 128(= 27) to 4194304(= 222) and B=16,
24, 32. The figure shows that the cost is almost proportional to logarithm of the
number of nodes, e.g. it is about 110 when N = 222 and B = 32. This figure
also shows that k is about 2 since the cost of node joining is 2 log N +kB, where
2 log N is the cost of normal-ordered-tree search and kB is the cost of min-max
value transmission with bypass links, e.g. it is about 2 × 32 when B = 32.

The maintenance cost for re-joining node is O(1), since the position search
is cut out unless the tuft has disappeared (see Section 3.1). Figure 4 (left) plots
the ratio of survived tufts in the OTT of N = 222, when a leaving node is
successively selected at random. This figure shows that only 2% of tufts have
disappeared even when a half of 222 nodes have left. Therefore, the maintenance
cost for rejoining node is very low, almost O(1) when more than a half of nodes
are alive.

Leaving of Node The cost of each step in the node leaving process described
in Section 3.2 is estimated as: 1 for the step (1), 4 for the step (2), 0 for the

0

20

40

60

80

100

120

100 1000 10000 100000 1000000 10000000

a
v
e
r
a
g
e
 #
 o
f
m
e
s
s
a
g
e
s

of nodes

B=16

B=24

B=32

0

20000

40000

60000

80000

100000

100 10000 1000000

a
v
e
r
a
g
e
 #
 o
f
m
e
s
s
a
g
e
s

of nodes

B=16 (wo MIN-MAX)
B=32 (wo MIN-MAX)
B=16
B=24
B=32

Fig. 3. Average maintenance cost for the first-time joining node (left) and Average
cost of path search (right)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000000 2000000 3000000 4000000

a
v
e
r
a
g
e

r
a
t
e

o
f

r
in
g

s
u
r
v
iv
in
g

of left nodes

0

5

10

15

20

25

30

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40

a
v
e
r
a
g
e
 #
 o
f
m
e
s
s
a
g
e
s

of left nodes(*100000)

B=16

B=24

B=32

Fig. 4. The ratio of survived tufts in OTT of size 222 nodes (left) and average main-
tenance cost for the leaving node selected at random and withdrawn from the OTT of
222 nodes (right)

step (3), 1 for the step (4), 2 for the step (5) and log Msub + α for the step (6).
Here, Msub is the number of nodes in the subtree of the leaving node, and α is
the cost to the leaving node that has the largest u value and at most 4.

Figure 4 (right) plots the average cost per 500,000 times when the leaving
node is successively selected at random from the OTT with N = 222 and B =
16, 24, 32. Note that the cost of min-max value transmission is included in this
simulation data. This figure shows that the cost is kept very low until a half
of 222 nodes has left out. Most of nodes need not reconfigure the ordered tree
because their tufts exist. When more than half of nodes withdrew, the number
of tree-nodes without tuft increases and the cost becomes higher.

Path Search In the path search evaluation, the pair of sender and receiver
nodes is selected at random, and path searching is tried 10000 times for each
pair on the OTT of size N ranging from 27(= 128) to 222(= 4194304). Figure 3
(right) depicts the average search cost with and without min-max value. The two
methods of the normal-ordered-tree search and the flooding-and-subtree search
are simultaneously performed. The cost of the normal-ordered-tree search is
O(2 log N + 8) since the cost of climbing up and down on the ordered tree is
O(2 log N) and the number of ring-nodes of each tree-node is 8. In contrast, the
cost of flooding-and-subtree search is O(BTTL) when the number of bypass links

assigned to each node is B. The simulation is performed for the case of TTL=3
and B=16, 24, 32. In the search process, even if TTL becomes 0 at some node,
the destination search continues further downward to its subtree if the node has
bypass links or child nodes whose mini-max values cover the destination address.
We call this “subtree search.” Figure (right) plots the average number of search
messages for the case of TTL=3. The figure shows that the search cost strongly
depends on the flooding. However, the search cost of the method using the min-
max value is largely suppressed and slowly increases to the number of nodes,
compared with the method without using the min-max value.

4.2 Path Length

In order to measure the average length of searched paths, we selected two end
nodes, search-message-sender node and target node, at random from the set of
OTT nodes of size N ranging from 128(= 27) to 4194304(= 222). We measured it
10000 times for each N , for B = 16, 24, 32, and TTL = 3. Figure 5 (left) depicts
the average length of searched paths. This figure shows that the average length

0

10

20

30

40

50

60

100 10000 1000000

a
v
e
r
a
g
e
 p
a
t
h
 l
e
n
g
t
h

of nodes

normal-ordered-tree only

all (B=16)

all (B=24)

all (B=32)

0

10

20

30

40

50

60

100 10000 1000000

a
v
e
r
a
g
e
 p
a
t
h
 l
e
n
g
t
h
 o
f
 t
h
e
 s
h
o
r
t
e
s
t
 p
a
t
h

of nodes

B=16

B=24

B=32

Fig. 5. Average path length(left) and average length of the shortest path(right).

of the paths searched by the normal-ordered-tree search is about 2 log N and
is longer than that of paths searched by both the normal-ordered-tree and the
flooding-and-subtree searches. Figures 5(right) shows the average length of the
shortest path.4 These results show the effect of the flooding-and-subtree search.

5 Related Work

Overlay networks for the P2P systems are classified to structured and unstruc-
tured ones. Gnutella [1] and Freenet [2] are the unstructured networks. Unstruc-
tured overlay networks mainly employ a flooding method for node searching.
The flooding method has advantages in the point that each node does not have
4 In the simulation, the path of shortest turnaround time is selected.

to maintain link connections and the searcher node can receive multiple answers.
However, the search is not complete because the search message can not be be
assured to reach the destination if the TTL is set to a limit to prevent the
flooding of search messages.

DHT is one of the most popular methods for structured overlay networks, and
various kinds of network configurations are proposed: circle [4], hypercube [7],
n-ary tree [5] , B-tree [9][10], butterfly network [11], de Bruijn Graph [12], and so
on. Node searching in DHT is complete and its cost is O(log N). In addition, the
processing load is well balanced among nodes because the nodes and contents are
evenly scattered. However, DHT is harder to make the search flexible compared
to the unstructured network. Although the path length is O(log N) in DHT, the
number of hops does not necessarily mean the network proximity. Therefore, we
have to devise the choice mechanism of routes, i.e. the choice of neighbor nodes
and ID [14] , by considering the network proximity. In addition, each node have
to maintain its bypass link table of size O(log N) whenever a new node joins or
an existing node leaves. As the network becomes larger, the maintenance cost
will become higher, and at worst, the search will fall into failure because of the
time consuming maintenance [15].

Our method devised on the OTT-based semi-structured overlay network has
advantages both the unstructured and structured networks. The flexible and ef-
ficient path finding is obtained by applying both the normal-ordered-tree search
and the flooding-and-subtree search to the OTT-structure. The network is ro-
bust because each node can maintain in O(1) with high probability if ring tufts
remain. This will occur until half of OTT nodes leave the network. In addition,
choosing the first found route in path searching, we can take into account the
network proximity.

6 Conclusion

This paper proposed a novel technique of P2P communication path management.
The proposed technique devises a robust semi-structured overlay network called
OTT (Ordered Tree with Tuft). The OTT method is effective in performance-
by-cost of the route maintenance for dynamically changing network.

The effect of the OTT method is evaluated by software simulation. The
simulation result shows that the maintenance cost is O(1) with high probability
if a half of nodes in OTT is alive (except for the first joining), and can find one
or more paths to a destination node, whose length is much less than log N for N
nodes in practical use, while the path search cost goes up to BTTL in the worst
case. Therefore, we can say that OTT keeps robustness by performing the quick
maintenance of OTT when a half of nodes in the network is alive. In addition,
the flooding-and-subtree search successfully finds short-length paths on OTT by
using bypass links.

This method is implemented as an overlay network in Kodama [13] system.
As an application of Kodama we are developing a business matching and collab-

oration support system. In this system, each node delivers and receives business
plans and company information. Therefore it needs robust overlay network.

Further research issue is to develop the distributed node ID allocation method.
The node ID allocation was performed as a centralized process in the simulation.
But the ID allocation process should be performed in the distributed environ-
ment. Another one is the more precise simulation to reflect practical application.
The simulation of this paper separately performed the node join, leave and search
processes. However, these three processes will occur concurrently in the practical
network services. Therefore the simulation is needed for more realistic dynamic
network environments where the node join, leave and search processes occur in
a highly concurrent way.

References

1. Gnutella: The gnutella protocol specification v0.4, url: http://www.gnutella.com/
(2000)

2. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. In: the Workshop on Design
Issues in Anonymity and Unobservablity. (2000) 46–66

3. web site, S.: (http://www.skype.com/)
4. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-

able Peer-To-Peer Lookup Service for Internet Applications. In: the 2001 ACM
SIGCOMM Conference. (2001) 149–160

5. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-scale Peer-to-Peer Systems. In: IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware). (2001) 329–350

6. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley (2001)

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. Technical Report TR-00-010, Berkeley, CA (2000)

8. Maymounkov, P., Maziéres, D.: Kademlia: A peer-to-peer information system
based on the XOR metric. In: ITPTS’02. (2002) 53–65

9. Baquero, C., Lopes, N.: B+tree on p2p: Providing content indexing over dht
overlays. Technical report, Universidade do Minho (2004)

10. Prakash, A.C.: P-Tree: A P2P Index for Resource Discovery Applications. In: 13th
International World Wide Web Conference. (2004) 390–391

11. Malkhi, D., Naor, M., Ratajzcak, D.: Viceroy: Scalable emulation of butterfly
networks for distributed hash tables (2003)

12. Kaashoek, M.F., Karger, D.R.: Koorde: A simple degree-optimal distributed hash
table. In: IPTPS’03. (2003) 323–336

13. Zhong, G., Amamiya, S., Takahashi, K., Mine, T., Amamiya, M.: The Design and
Implementation of KODAMA System. IEICE Transactions INF E85-D (2002)
637–646

14. Song, J., Park, S., Yang, J.: An Adaptive Proximity Route Selection Scheme in
DHT-Based Peer to Peer Systems. Parallel and Distributed Computing: Applica-
tions and Technologies 3320 (2004) 778–781

15. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling Churn in a DHT. In:
the 2004 USENIX Technical Conference. (2004)

